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Reference deconvolution, i.e., using the lineshape distortions of
a reference signal with known ideal shape to deduce a correction
function for the whole spectrum, is normally performed in the time
domain. As a disadvantage, reference signals of higher multiplicity
cannot be employed because of mathematical instabilities. In this
work we show that these difficulties can be circumvented by
carrying out reference deconvolution in the frequency domain.
The computational demands of this approach are higher, but not
prohibitive, because the width of the correction function is only a
fraction of that of the whole spectrum. An iterative algorithm was
implemented that yields the optimum widths of the correction
function and of the ideal reference signal. Singular value decom-
position was found to produce better results than LU decomposi-
tion of the design matrix. The feasibility of the deconvolution
method and of the algorithm are demonstrated using both syn-
thetic and experimental data. © 1999 Academic Press
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INTRODUCTION

Computationally, this is extremely efficient because it simply
amounts to point-by-point multiplication and division of free
induction decays. However, when the reference signal po
sesses a multiplet structure and its free induction decay ther
fore passes through zero, numerical instabilities can arise. Tt
limits the applicability of reference deconvolution because
very often the spectrum does not contain a suitable singls
peak. Although the addition to the sample of a substanc
yielding such a signal can solve this problem, it is frequently
undesirable (e.g., when the sample is needed for other exp
iments and the reference substance must thus be remov
again, or because of possible interactions between the reft
ence substance and other species in the sample) or even |
possible (e.g., in the case wof vivo NMR).

In this work, we investigate reference deconvolution in the
frequency domain. This method is better conditioned mathe
matically, though somewhat more demanding computationall
However, the computational effort is not as large as it ma
seem at first glance: under usual conditions the response fur
tion is confined to a fairly narrow frequency interval, so in
order to correct a given data point, only a small number o

~ Every experimgntal NMR spectrum i_s a convolution of thggints in its vicinity must be considered. The main advantag
ideal spectrum with the response function of the spectromeigf.ihis approach is that it allows multiplets (for instance, the

The resulting changes of lineshapes, intensities, and positions

GBljuituous solvent peak, which is a multiplet for quite a

make evaluation difficult and lead to wrong predictions of spectrg|, mper of common solvents) to be used as reference signa
or kinetic parameters. For most kinds of instrumental imperfeys should considerably increase the range of applicability ¢

tions, above all inhomogeneity &,, the response function is

reference deconvolution.

independent of frequency and thus affects all signals of the spec-

trum in the same way. The resulting errors can be eliminated

by RESULTS AND DISCUSSION

reference deconvolution. This technique relies on a signal for
which the ideal shape is known. From the form of this referenggaconvolution in the Time and Frequency Domains

signal in the experimental spectrum, a correction function

is

derived and then applied to the whole spectrum. Since its first! "€ experimental spectrum in the frequency donfi(w)

application to NMR difference spectroscopy in 191J, (efer-

is given by the convolution of the ideal spectr8g(w) with

ence deconvolution has found widespread use in differdf€ instrumental respons¥w),

branches of high-resolution NMR2{£4), in particular NOE dif-
ference measurements),(2D NMR experiments) including
pulsed-field-gradient methodg)( and dynamic NMR spectros-
copy with total band shape analys8.(

[1]

Sew) = J Si(0")R(w — 0")dw’.

In all cases reported in the NMR literature so far, reference

deconvolution has been performed in the time domain on
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Kxccording to the reciprocity theorems of Fourier transforma
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tion, Eqg. [1] is equivalent to multiplication of the ideal freeln the presence of noise, however, spikes arise, and the “cc
induction decay5y(t) (for simplicity, we use the same symbolrected” spectrum does not deserve the epithet.

for a time-domain function and its corresponding frequency- In the frequency domain, anfold multiplet can be obtained
domain function, and distinguish between them by explicitligy convolution of a singlet witim 8-functions separated by the
giving the variablet or w) with the Fourier transforniR(t) of coupling constand. In the time domain, this is equivalent to a

the instrumental response, multiplication of the free induction decay by ¢¢sJt). As
Bothner-By and Dadok9] suggested, the multiplet structure of
S.(t) = Sy(t) - R(t) 2] the reference peak can therefore be eliminated by multiplyin
Xp .

the free induction decay by 1/ct{srJt). However, this causes
o _ ) ) ~essentially the same mathematical difficulties. On the on
From Eq. [2], it is immediately obvious that the ideal timenang, in the vicinity of the zero crossings of the cosine tern
domain signal can be recovered by multiplying the experimefyformation must be extracted from data points of the fre
tal free induction decay by E(t). By the same token, the idealiqyction decay that lie below the noise level. On the othe
spectrum is regained by a convolution of the experimentghng any uncertainty in the preacquisition delay leads to
spectrum with the Fourier transform ofR(f): shift of the zero crossings of the experimental time-domai
signal versus those of cY{srJt), and thus to spikes.
Sexplt) The approach of Morrigt al. (10) is based on interpolation
Su(t) = R() [3]  over the gaps of the time-domain correction functi(t) and
demands careful iterative determination of estimates for th
+oo coupling constant, chemical shift, signal asymmetry, and pre
Su(w) = J Sexp(@")C(w — 0')dw’ [4] acquisition delay. As these authors pointed out, the applicabi
— ity of their algorithm is limited to doublet signals. With refer-
ence signals of higher multiplicity, the free induction decay
) ) 5] often possesses much broader regions in the vicinity of the ze
crossings where it falls below the noise level, so the interpc
lation must be performed over a range that is too wide fo
The implementation of reference deconvolution in the timgatisfactory results.
domain (free-induction-decay deconvolution for lineshape en-Evidently, the origin of the stability problems with decon-
hancement, FIDDLE) is well documente@—4): S,(t) is Vvolution in the time domain is the fact that each data point o
zero-filled to twice its length and Fourier transformed. Phagee correction functior€(t) is obtained from exactly one data
and baseline of the spectrua,(w) are corrected. The imag- point of the free induction decay, so precise resultsG¢r)
inary part ofS,, () as well as all signals of the real part exceptannot be expected wherever the time-domain signal does r
the reference peak are set to zero, i.e., only the absorptigntain sufficient information about the instrumental responst
mode of the reference signal is retained. Inverse Fourier trahs-, wherever the ideal signal is near zero. In contrast, wit
formation and discarding the second half of the resulting syrdleconvolution in the frequency domain each data point of th
metrical free induction decay yield the experimental referencerrection functionC(w) is determined from a series of data
signal S¢rex{t). The ideal reference sign&l4(t) is con- points of the spectrum, thus avoiding this difficulty.
structed either directly in the time domain or in the frequency In the strict mathematical sense, the stability problem is nc
domain with subsequent inverse Fourier transformation. Tetiminated completely by this approach because situatior
corrected time-domain sign&l.,,(t) is finally obtained by  could arise wheré€(w) does not exist or is not uniqué.X).
This, however, would imply thaE(t) cannot be Fourier trans-

Clw) = @9( R(D

Sur(t) formed, so in these pathological cases deconvolution in tk
Seon(t) = _tefid\ 7 Sepl)- [6] time domain would be unlikely to succeed, either. Apart from
Setexdt) this rather theoretical limitation, the computational demand

are certainly higher when deconvolution is performed in the

When a singlet is used as the reference signal, this procedfiegjuency domain, although this constitutes no fundament
is well-conditioned mathematically, but reference signals posandicap (the more so when one considers the present trend:
sessing a multiplet structure lead to zeroes in the time domanardware speed and prices); besides, it is normally sufficient
At these points of time, the free induction decay does netnploy a correction function that is only a fraction of the size
contain any information about the deviations of the expermf the whole spectrum, e.g., a few hundreds of data points. 2
mental signal from the ideal signal. In a hypothetical nois@further consequence, the reference signal does not need to
free experiment, numerator and denominator of the fracti@ompletely isolated from other signals of the spectrum, a
Setid(1)/ Ser exdt) bECOME zeTO0 Simultaneously, and the resulopposed to time-domain deconvolution where inverse Fourie
ing indeterminate expressions can be resolved mathematicditgnsformation of5,, () produces artifacts unless the absorp-
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tion-mode signal of the reference decays to a low level withimowever, the system is overdetermined. Under these conc
the spectral window chosen (compare the above descriptiortiohs, an optimum solution can be sought that minimig&s
the FIDDLE algorithm).
X'=X-c—r) [10]
Determination of the Correction Function
For a discrete deconvolution of an experimental spectrumAn iterative procedure was used to obtain the correctiol
SPP with the correction functiorC;, both of which possess afunction:

finite definition range, Eq. [4] is transformed into 1. The optimum (in the sense of Eq. [10]) solution vector of
Eq. [9] is calculated for giverm and n and for an ideal
k+n reference signal constructed from a given set of spectral p
Sor= > S.C.;, [7] rametersP,.
i=k—n 2. Several of thé, (e.g., the chemical shift, which depends

on temperature and often on the composition of the sampl

whereSE° is the corrected spectrum. An analogous equati&‘?nno" be predicted accurately enough, so these are treatec
holds for the relationship between the experimental referenfég€ parameters. The same holdsioandn because increas-
signal X; and the ideal reference sign®,, the correction INg their values increases the information about the line dis

function being the same as in Eq. [7], tortions, but in a real spectrum also increases the noise.
This sequence is repeated until a minimumydfis reached,
k+n andc thus constitutes the optimum correction function.
Re= O X -Ceci [8] For the minimization, a simplex algorithm was employed
i=k-n because this does not need derivatives and allows easy imp

mentation of the condition thati2+ 1 must be smaller than

Let the width of the ideal reference signal bedata points. M- The program code for this subroutine, as well as for th
From the preceding equations, the width of the correctidiners described below, was taken from R&g)(To maintain

function is seen to ber® + 1 data points. The correctegthe nondegeneracy of the simplex, continuous variables we
spectrum is thus shorter than the experimental one biata used fqr the wid_th of the ideal reference signal and that _of th
points at either end, and an intervalrof+ 2n + 1 data points correction function, and these were mapped onto the discre

H H 2
of the experimental reference signal is needed to determine ¥g&iablesm andn for each calculation of”. _ _
correction function. Step 1 of the above procedure was carried out either by usir

To avoid zero or negative indices, the discrete functigns the normal equations andJ decomposition, or by singular
and C are replaced by and c, the correspondences beind’alue decomposition. With the first method, Eq. [9] is multi-

given by plied from the left with the transpose of,
T . —_— T .
X, < Xoun X'-r=X'X-c. [11]
Cq < Chii—g This reduces the dimension of the vector on the left-hand sic

frommto 2n + 1; however X' - r still contains information
With these new variables, the system of linear equations f@ln all m data points of the ideal reference signalikewise,
lowing from Eq. [8] is written in matrix notation as the rectangular matrixX of dimension (& + 1) X mis
transformed into a (@ + 1) X (2n + 1) square matrix "X,
which takes less storage. The elements of the so-called desi

r=X-c . .
matrix XX are given by
R, Xp Xt Xopga C1
Ro_[ % % = | | @ [9] m-1
. K . (XTX)” = E Xi+k.Xj+k' [12]
an Xm Xm+1 * " Xonam Con+1 k=0

Form < 2n + 1, i.e., when the width of the correctionlt is evident thaiX "X is symmetrical and can be constructed in
function is larger than the width of the ideal reference signa,straightforward way from the experimental spectrum. The s¢
the system of linear equations, Eq. [9], is underdetermineaf. normal equations, Eq. [11], solves the linear least square
Whenm = 2n + 1, the matrixX is square, and one solutionproblem, as can be shown by differentiation of Eq. [1T8)(
exists unlesx is singular. In the usual case of > 2n + 1, Equation [11] is then solved dyU decomposition12), i.e.,
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by determining a lower triangular matrix (nonzero elements better the starting values of the spectral paramegrare.
only on the diagonal and below) and an upper triangular matfurthermore, because of the strong dependence df ther
U (nonzero elements only on the diagonal and above) such thietgular value decompositions on the width of the correctiol
function, it is computationally much more efficient to start the
XTX = LU. [13] iterations with a small width and let the simplex algorithm
enlarge it than to approach the optimum width from the othe

Compared to other methods for the solution of systems %LPIe' ) )
linear equations, e.g., Gauss—Jordan eliminatids, decom- Before the calculations, phase and baseline of the spect

position is faster and more stable against round-off errd¥€re carefully corrected. Only data from the real part of the
However, its main advantage is that once thé decomposi- spectrum (absorption mode) were used for the determination

tion of X™X has been found, which requires on the ordendf the correction function, i.e., as the experimental referenc
multiplications, the solution for a given vectd” - r can be signalX;. The reason is that with a Lorentzian line the absorp

obtained by am? process (a forward—backward substitutiofion @nd dispersion mode signals decay asymptotically as 1/(

2 . .
scheme). This allowed a much more efficient optimization 6f @o)” @nd 1/f> — wo), respectively. Although a truncation of

the parameters because it was generally found that in the 1df§ dispersion mode signal would not cause problems wit
stages of the iteration procedure and n tend to remain deconvolution in the frequency domain—as opposed to decol

constant, so the design matéX (and thus itsLU decom- volqtion in the time domgin, where inv'erse' Fourier transfor:
position) does not change. mation of the truncajted s'lgnal would give rise to severe arti
The second method is singular value decompositic) ¢f facts, and vyhere the imaginary part must thereforg be discard
the (20 + 1) X m matrix X. With this algorithm, a (2 + 1) (4)—the tail of the dlspgr5|ve flank of a nearby signal would
X m column orthogonal matrit, a (2n + 1) X (2n + 1) cprrupt Xis beqause this has the same effect as a strong
diagonal matrix diagg;), and a (A + 1) X (2n + 1) distorted baseline. _ _ .
orthogonal matrix/ are determined such that In this paper, only reference.5|gnals chgracterlzed byaglng
resonance frequency and a single coupling constant (typical
the quintet of a CHD group, as in deuterated acetonitrile,
methanol, or acetone) were used. No new aspects arise wr
) ) . more complicated cases are considered. Spectral pararReter:
Because of Fhe speC|a_I propertl_es of these matrices, the I§gste the residual offset of the baseline, as well a®,, and
square solution vectar is then given by 12) T, of the reference signal. Only the first two parameters wer
made adjustable, whereag was extracted fronX;, and forT,
c =V -diagl/w)-U"-r. [15] the value obtained from a well-shimmed spectrum was use
The reasons for this choice are that a baseline offset can |
The operational count of singular value decomposition @mpensated much more easily by an additive algorithm the
only slightly higher than that of U decomposition. Again, by a multiplicative one (Eq. [7]), and that an error in the
once the decomposition is known, the solution for a giveroupling constant induces a frequency-dependent deviatio
vectorr is much less costly, so optimization of the parametevshich would be at variance with the fundamental premise ©
can again be implemented efficiently. Singular value decomeference deconvolution. In contrast to this, slight inaccuracie
position is an exceptionally stable procedure that can evenibhew, or T, do not have a crucial effect on the corrected
applied when the matrix is singular. In this case, the algorithepectrum. The former leads only to a small shift of the whole
separately yields orthonormal bases for the range and gpectrum, and the latter is equivalent to a multiplication of the
nullspace of the matrix, and these can be combined in a vdrge induction decay by exp{l, ., — t/T,); as the value
simple way to find the solution vector of the smallest lengtassumed fofl, will usually be too long rather than too short,
(12): Any singularity is reflected by a zero elemewt and the line narrowing accompanied by a decrease of the signal-t
desired solution vector is found by zeroing the associatedise ratio results, but unle$s is unreasonably short, this will
element 1W; in Eqg. [15]. In the presence of noise, the matrixiot cause any stability problems.
can be numerically close to singular. In this case, one or more
elementswj become very small. As this correspondg 'to aByamples
ambiguous combination of input datéU decomposition
yields a strongly oscillating solution vector under these cir- The algorithm was tested with both synthetic and experi
cumstances, and better results are obtained with singular vatuental data.
decomposition because the pertaining combination of variableg-igure 1 shows an example with synthetic data and fairl
can be discarded by setting the reciprocal elemew; &qual high digital resolution (0.046 Hz per data point). As signal anc
to zero. reference, an ABCD spin systerii ¢ = 1.5 s) and a quintet
It is obvious that the optimization will proceed faster théT " = 1.0 s) with the spectral parameters of {IN were

X = U - diagw,) - V. [14]
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FIG. 1. Test of the deconvolution algorithm with synthetic data. Left, signal of an ABCD spin system; right, quintet reference signal. Top trace,
spectrum; center trace, after convolution with an asymmetric line broadening function and addition of noise; bottom trace, after deconvolutither Fo
explanation, see text.

chosen. For simplicity, the maximum peak intensities of signéle., two orders of magnitude below the digital resolution),
and reference were taken to be comparable. The ideal specthaseline offset of 0.013% of the peak height instead of zert
is displayed at the top of the figure. and widths of the correction function and the ideal referenc
An asymmetrical line broadening function was constructesignal of 6.12 and 17.71 Hz, respectively. With these fina
as the sum of 10 Gaussians of different amplitudes, linewidthmrametersy? was 50 times lower than with the starting set.
and center positions within an interval of 0.5 Hz. Convolution The bottom trace of the figure displays the spectrum afte
of the ideal spectrum with this line broadening function andeconvolution with the correction function obtained by singu-
superposition of statistical noise (signal-to-noise ratio 4000:Hy value decomposition, where only elemenfof magnitude
yielded the spectrum shown as the center trace of the figugeeater than 108 of the maximum value were retained (this
The signals are broadened considerafl§% ~ 0.45 s); they amounted to three-quarters of twg, and 1iv; was set to zero
exhibit a pronounced asymmetry, and the small couplings dog the others. The peaks are seen to be sharp and symmetric
no longer resolved. and the small couplings are well resolved again. Using th
This spectrum served as the input to the deconvoluti®xBCD signal, after deconvolution, as the input to LAOCOON
procedure. Foll, of the reference signal, we took the value 0f14) gave spectral parameters that were essentially identical
the ideal spectrum, which is a rather strict condition. Startirtjose initially used, whereas determination of several of thes
parameters for the iterations wele= 2.55 Hz (asestimated parameters is impossible with the spectrum in the center trac
from the broadened spectrum), a baseline offset of zero, dtis evident that deconvolution must decrease the signal-tc
width of the correction function of 2.62 Hz (57 data points)hoise ratio. In the example shown, this effect is particularly
and a width of the ideal reference signal of 16.88 Hz (368 dgteonounced (the signal-to-noise ratio after deconvolution i
points). The iterations converged drn= 2.48953 Hzwhich about 80, i.e., worse by a factor of 50 than in the spectrur
differs from the value of the ideal spectrum by 0.00053 Hzefore deconvolution). This, however, is not due to the fact the
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results that were superior to thoseldd decomposition, in the
10 Hz sense that the baseline artifacts were considerably smaller.

A universal rule for the cutoff limit of thew; cannot be
given. Plotting logg;) sorted by size is a helpful though
somewhat time-consuming procedure. The distribution of th
w; depends on the (usually unknown) shape of the line broac
ening function and on the signal-to-noise ratio. It seems natur
to assume that for a constant line broadening function on
should select a cutoff limit of they; that is inversely propor-
tional to the signal-to-noise ratio.

Finally, the applicability of the described algorithm is also
demonstrated with an experimental spectrum. A dynami
NMR measurement was chosen for this purpose because w
this method lineshape distortions are especially problemat
and lead to wrong estimates of the kinetic parameters. B

reference deconvolution one can easily correct for varying fiel
homogeneity between the spectra of a series. In this way tt
hypothetical static signals for the sample under study can

obtained very accurately and reliably from nonexchangin
i T reference samples, and the shimming procedure can be shc
ened considerably.

7.0 6.9 Portions of the dynamic NMR spectra (digital resolution

ppm 0.11 Hz per data point) observed in proton self-exchang

FIG. 2. Application of the deconvolution algorithm to an experimentape.tWeen p'methOXyN’N'_dlmemylamlme and I'[.S ConJuQated,

spectrum (dynamic NMR spectrum pfmethoxyN,N-dimethylaniline and its acid (13) are shown in Fig. 2. The reference signal was agai

conjugated acid in acetonitrild;) measured on a Varian Gemini 200 specthe quintet of CRQCN. The spectrum was recorded with the

trometer. Shown is the signal of the meta protons of the substrate only. Tefhims deliberately misadjusted. The resulting artifacts (a shot

spectrum obtaiqed with misadjusted shims; bottom, after deconvolution. Fge . o+ half height, which even gives rise to a signal splitting
further explanation, see text. . . .

with the smaller peaks) are clearly discernible.

The iterations were started with= 2.55 Hz,width of the
the deconvolution is performed in the frequency domain iorrection function 6.26 Hz (57 data points), width of the idea
stead of the time domain; rather, the reason is the consideraiglerence signal 40.43 Hz (368 data points), and baseline offs
degree of line broadening that is undone. When the spectraaro. T, of the ideal reference signal was taken to be 0.65 ¢
before deconvolution (center of Fig. 1) is Fourier transformethe final values of the parameters wele= 2.47122 Hz,
and an exponential multiplication is applied to recover theidths of the correction function and the ideal reference sign:
initial linewidths, a comparable deterioration of the signal-tdt0.44 and 22.41 Hz (95 and 204 data points), respectively, al
noise ratio occurs. an offset of 0.011% of the peak height. Again, singular value

Iterative adjustment of the,, m, andn was found to be very
important. Missettings of by as little as 0.01 Hz already led
to noticeable distortions of the baseline. Distortions also arise
when the width of the correction function or that of the ideal
reference signal are changed. As long as the ratimafnd
(2n + 1) is kept constant, these effects are not very severe.
However, when this ratio was decreased by 50%, the baseline
artifacts became so strong that the spectrum was no longer

discernible.
It is clear that in a noise-free spectrunt) decomposition
and singular value decomposition are equivalent as long as the

matrix is not singular and round-off errors can be neglected. In

this ideal case, there is also no point in zeroing certain elements T | |
1/w; because all of the associated data contain relevant infor- 5 0 5
mation. However, in the presence of noise, singular value

decomposition together with zeroing those elementg 1Hat Hz
indicate ambiguous combinations of input data generally gave FIG. 3. Correction function employed for deconvolution in Fig. 2.
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