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Reference deconvolution, i.e., using the lineshape distortions of
reference signal with known ideal shape to deduce a correction

unction for the whole spectrum, is normally performed in the time
omain. As a disadvantage, reference signals of higher multiplicity
annot be employed because of mathematical instabilities. In this
ork we show that these difficulties can be circumvented by

arrying out reference deconvolution in the frequency domain.
he computational demands of this approach are higher, but not
rohibitive, because the width of the correction function is only a
raction of that of the whole spectrum. An iterative algorithm was
mplemented that yields the optimum widths of the correction
unction and of the ideal reference signal. Singular value decom-
osition was found to produce better results than LU decomposi-
ion of the design matrix. The feasibility of the deconvolution
ethod and of the algorithm are demonstrated using both syn-

hetic and experimental data. © 1999 Academic Press

Key Words: NMR spectroscopy; spectrum processing; frequency
omain methods; resolution enhancement; reference deconvolution.

INTRODUCTION

Every experimental NMR spectrum is a convolution of
deal spectrum with the response function of the spectrom
he resulting changes of lineshapes, intensities, and position
ake evaluation difficult and lead to wrong predictions of spe
r kinetic parameters. For most kinds of instrumental impe

ions, above all inhomogeneity ofB0, the response function
ndependent of frequency and thus affects all signals of the
rum in the same way. The resulting errors can be eliminate
eference deconvolution. This technique relies on a signa
hich the ideal shape is known. From the form of this refere
ignal in the experimental spectrum, a correction functio
erived and then applied to the whole spectrum. Since its
pplication to NMR difference spectroscopy in 1977 (1), refer-
nce deconvolution has found widespread use in diffe
ranches of high-resolution NMR (2–4), in particular NOE dif-

erence measurements (5), 2D NMR experiments (6) including
ulsed-field-gradient methods (7), and dynamic NMR spectro
opy with total band shape analysis (8).
In all cases reported in the NMR literature so far, refere

econvolution has been performed in the time domain o
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omputationally, this is extremely efficient because it sim
mounts to point-by-point multiplication and division of fr

nduction decays. However, when the reference signal
esses a multiplet structure and its free induction decay t
ore passes through zero, numerical instabilities can arise
imits the applicability of reference deconvolution beca
ery often the spectrum does not contain a suitable si
eak. Although the addition to the sample of a subst
ielding such a signal can solve this problem, it is freque
ndesirable (e.g., when the sample is needed for other e

ments and the reference substance must thus be rem
gain, or because of possible interactions between the
nce substance and other species in the sample) or eve
ossible (e.g., in the case ofin vivo NMR).
In this work, we investigate reference deconvolution in

requency domain. This method is better conditioned ma
atically, though somewhat more demanding computation
owever, the computational effort is not as large as it
eem at first glance: under usual conditions the response
ion is confined to a fairly narrow frequency interval, so
rder to correct a given data point, only a small numbe
oints in its vicinity must be considered. The main advan
f this approach is that it allows multiplets (for instance,
biquituous solvent peak, which is a multiplet for quite
umber of common solvents) to be used as reference sig
his should considerably increase the range of applicabili
eference deconvolution.

RESULTS AND DISCUSSION

econvolution in the Time and Frequency Domains

The experimental spectrum in the frequency domainSexp(v)
s given by the convolution of the ideal spectrumSid(v) with
he instrumental responseR(v),

Sexp~v! 5 E
2`

1`

Sid~v9! R~v 2 v9!dv9. [1]

ccording to the reciprocity theorems of Fourier transfor
1090-7807/99 $30.00
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70 GOEZ AND HEUN
ion, Eq. [1] is equivalent to multiplication of the ideal fr
nduction decaySid(t) (for simplicity, we use the same symb
or a time-domain function and its corresponding freque
omain function, and distinguish between them by explic
iving the variablet or v) with the Fourier transformR(t) of

he instrumental response,

Sexp~t! 5 Sid~t! z R~t!. [2]

rom Eq. [2], it is immediately obvious that the ideal tim
omain signal can be recovered by multiplying the experim

al free induction decay by 1/R(t). By the same token, the ide
pectrum is regained by a convolution of the experime
pectrum with the Fourier transform of 1/R(t):

Sid~t! 5
Sexp~t!

R~t!
[3]

Sid~v! 5 E
2`

1`

Sexp~v9!C~v 2 v9!dv9 [4]

C~v! 5 ^7S 1

R~t!D . [5]

The implementation of reference deconvolution in the t
omain (free-induction-decay deconvolution for lineshape
ancement, FIDDLE) is well documented (2–4): Sexp(t) is
ero-filled to twice its length and Fourier transformed. Ph
nd baseline of the spectrumSexp(v) are corrected. The ima

nary part ofSexp(v) as well as all signals of the real part exc
he reference peak are set to zero, i.e., only the absor
ode of the reference signal is retained. Inverse Fourier t

ormation and discarding the second half of the resulting s
etrical free induction decay yield the experimental refere

ignal Sref,exp(t). The ideal reference signalSref,id(t) is con-
tructed either directly in the time domain or in the freque
omain with subsequent inverse Fourier transformation.
orrected time-domain signalScorr(t) is finally obtained by

Scorr~t! 5
Sref,id~t!

Sref,exp~t!
Sexp~t!. [6]

When a singlet is used as the reference signal, this proc
s well-conditioned mathematically, but reference signals
essing a multiplet structure lead to zeroes in the time dom
t these points of time, the free induction decay does
ontain any information about the deviations of the exp
ental signal from the ideal signal. In a hypothetical no

ree experiment, numerator and denominator of the frac

ref,id(t)/Sref,exp(t) become zero simultaneously, and the res
ng indeterminate expressions can be resolved mathemat
-
y
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n the presence of noise, however, spikes arise, and the
ected” spectrum does not deserve the epithet.

In the frequency domain, ann-fold multiplet can be obtaine
y convolution of a singlet withn d-functions separated by t
oupling constantJ. In the time domain, this is equivalent to
ultiplication of the free induction decay by cosn(pJt). As
othner-By and Dadok (9) suggested, the multiplet structure

he reference peak can therefore be eliminated by multip
he free induction decay by 1/cosn(pJt). However, this cause
ssentially the same mathematical difficulties. On the
and, in the vicinity of the zero crossings of the cosine t

nformation must be extracted from data points of the
nduction decay that lie below the noise level. On the o
and, any uncertainty in the preacquisition delay leads
hift of the zero crossings of the experimental time-dom
ignal versus those of cosn(pJt), and thus to spikes.
The approach of Morriset al. (10) is based on interpolatio

ver the gaps of the time-domain correction functionC(t) and
emands careful iterative determination of estimates fo
oupling constant, chemical shift, signal asymmetry, and
cquisition delay. As these authors pointed out, the applic

ty of their algorithm is limited to doublet signals. With refe
nce signals of higher multiplicity, the free induction de
ften possesses much broader regions in the vicinity of the
rossings where it falls below the noise level, so the inte
ation must be performed over a range that is too wide
atisfactory results.
Evidently, the origin of the stability problems with deco

olution in the time domain is the fact that each data poin
he correction functionC(t) is obtained from exactly one da
oint of the free induction decay, so precise results forC(t)
annot be expected wherever the time-domain signal doe
ontain sufficient information about the instrumental respo
.e., wherever the ideal signal is near zero. In contrast,
econvolution in the frequency domain each data point o
orrection functionC(v) is determined from a series of da
oints of the spectrum, thus avoiding this difficulty.
In the strict mathematical sense, the stability problem is

liminated completely by this approach because situa
ould arise whereC(v) does not exist or is not unique (11).
his, however, would imply thatC(t) cannot be Fourier tran

ormed, so in these pathological cases deconvolution in
ime domain would be unlikely to succeed, either. Apart f
his rather theoretical limitation, the computational dema
re certainly higher when deconvolution is performed in

requency domain, although this constitutes no fundam
andicap (the more so when one considers the present tre
ardware speed and prices); besides, it is normally sufficie
mploy a correction function that is only a fraction of the s
f the whole spectrum, e.g., a few hundreds of data point
further consequence, the reference signal does not need

ompletely isolated from other signals of the spectrum
pposed to time-domain deconvolution where inverse Fo

ransformation ofS (v) produces artifacts unless the abso
exp
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71REFERENCE DECONVOLUTION IN THE FREQUENCY DOMAIN
ion-mode signal of the reference decays to a low level w
he spectral window chosen (compare the above descripti
he FIDDLE algorithm).

etermination of the Correction Function

For a discrete deconvolution of an experimental spec

i
exp with the correction functionCj, both of which possess
nite definition range, Eq. [4] is transformed into

Sk
corr 5 O

i5k2n

k1n

Si
exp z Ck2i , [7]

hereSk
corr is the corrected spectrum. An analogous equa

olds for the relationship between the experimental refer
ignal Xi and the ideal reference signalRk, the correction
unction being the same as in Eq. [7],

Rk 5 O
i5k2n

k1n

Xi z Ck2i. [8]

et the width of the ideal reference signal bem data points
rom the preceding equations, the width of the correc

unction is seen to be 2n 1 1 data points. The correct
pectrum is thus shorter than the experimental one byn data
oints at either end, and an interval ofm 1 2n 1 1 data point
f the experimental reference signal is needed to determin
orrection function.
To avoid zero or negative indices, the discrete functionX

nd C are replaced byx and c, the correspondences be
iven by

Xp 7 xp1n

Cq 7 cn112q.

ith these new variables, the system of linear equations
owing from Eq. [8] is written in matrix notation as

r 5 X z c

1
R1

R2···
Rm

2 5 1
x1 x2 · · · x2n11

x2 x3 · · · x2n12···
···

···
···

xm xm11 · · · x2n1m

2 z 1
c1

c2···
c2n11

2 . [9]

For m , 2n 1 1, i.e., when the width of the correcti
unction is larger than the width of the ideal reference sig
he system of linear equations, Eq. [9], is underdeterm

henm 5 2n 1 1, the matrixX is square, and one soluti
xists unlessX is singular. In the usual case ofm . 2n 1 1,
n
of

m

n
ce

n

he

l-

l,
d.

owever, the system is overdetermined. Under these c
ions, an optimum solution can be sought that minimizesx2,

x2 5 ~X z c 2 r !2. [10]

An iterative procedure was used to obtain the correc
unction:

1. The optimum (in the sense of Eq. [10]) solution vecto
q. [9] is calculated for givenm and n and for an idea

eference signal constructed from a given set of spectra
ametersPl.

2. Several of thePl (e.g., the chemical shift, which depen
n temperature and often on the composition of the sam
annot be predicted accurately enough, so these are trea
ree parameters. The same holds form andn because increa
ng their values increases the information about the line
ortions, but in a real spectrum also increases the noise.

his sequence is repeated until a minimum ofx2 is reached
ndc thus constitutes the optimum correction function.
For the minimization, a simplex algorithm was emplo

ecause this does not need derivatives and allows easy i
entation of the condition that 2n 1 1 must be smaller tha
. The program code for this subroutine, as well as for
thers described below, was taken from Ref. (12). To maintain

he nondegeneracy of the simplex, continuous variables
sed for the width of the ideal reference signal and that o
orrection function, and these were mapped onto the dis
ariablesm andn for each calculation ofx2.
Step 1 of the above procedure was carried out either by

he normal equations andLU decomposition, or by singul
alue decomposition. With the first method, Eq. [9] is mu
lied from the left with the transpose ofX,

XT z r 5 XTX z c. [11]

his reduces the dimension of the vector on the left-hand
rom m to 2n 1 1; however,XT z r still contains information
n all m data points of the ideal reference signalr. Likewise,

he rectangular matrixX of dimension (2n 1 1) 3 m is
ransformed into a (2n 1 1) 3 (2n 1 1) square matrixXTX,
hich takes less storage. The elements of the so-called d
atrix XTX are given by

~XTX ! ij 5 O
k50

m21

xi1k z xj1k. [12]

t is evident thatXTX is symmetrical and can be constructed
straightforward way from the experimental spectrum. Th
f normal equations, Eq. [11], solves the linear least squ
roblem, as can be shown by differentiation of Eq. [10] (12).
Equation [11] is then solved byLU decomposition (12), i.e.,
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72 GOEZ AND HEUN
y determining a lower triangular matrixL (nonzero elemen
nly on the diagonal and below) and an upper triangular m
(nonzero elements only on the diagonal and above) suc

XTX 5 LU. [13]

ompared to other methods for the solution of system
inear equations, e.g., Gauss–Jordan elimination,LU decom-
osition is faster and more stable against round-off e
owever, its main advantage is that once theLU decomposi

ion of XTX has been found, which requires on the order on3

ultiplications, the solution for a given vectorXT z r can be
btained by ann2 process (a forward–backward substitut
cheme). This allowed a much more efficient optimizatio
he parameters because it was generally found that in the
tages of the iteration procedurem and n tend to remain
onstant, so the design matrixXTX (and thus itsLU decom-
osition) does not change.
The second method is singular value decomposition (12) of

he (2n 1 1) 3 m matrix X. With this algorithm, a (2n 1 1)
m column orthogonal matrixU, a (2n 1 1) 3 (2n 1 1)

iagonal matrix diag(wj), and a (2n 1 1) 3 (2n 1 1)
rthogonal matrixV are determined such that

X 5 U z diag~wj! z VT. [14]

ecause of the special properties of these matrices, the
quare solution vectorc is then given by (12)

c 5 V z diag~1/wj! z UT z r. [15]

The operational count of singular value decompositio
nly slightly higher than that ofLU decomposition. Again
nce the decomposition is known, the solution for a g
ectorr is much less costly, so optimization of the parame
an again be implemented efficiently. Singular value dec
osition is an exceptionally stable procedure that can eve
pplied when the matrix is singular. In this case, the algor
eparately yields orthonormal bases for the range and
ullspace of the matrix, and these can be combined in a
imple way to find the solution vector of the smallest len
12): Any singularity is reflected by a zero elementwj, and the
esired solution vector is found by zeroing the assoc
lement 1/wj in Eq. [15]. In the presence of noise, the ma
an be numerically close to singular. In this case, one or
lementswj become very small. As this corresponds to
mbiguous combination of input data,LU decomposition
ields a strongly oscillating solution vector under these
umstances, and better results are obtained with singular
ecomposition because the pertaining combination of vari
an be discarded by setting the reciprocal element 1/wj equa
o zero.

It is obvious that the optimization will proceed faster
ix
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etter the starting values of the spectral parametersPl are.
urthermore, because of the strong dependence of theLU or
ingular value decompositions on the width of the correc
unction, it is computationally much more efficient to start
terations with a small width and let the simplex algorit
nlarge it than to approach the optimum width from the o
ide.
Before the calculations, phase and baseline of the sp
ere carefully corrected. Only data from the real part of
pectrum (absorption mode) were used for the determinati
he correction function, i.e., as the experimental refer
ignalXi. The reason is that with a Lorentzian line the abs
ion and dispersion mode signals decay asymptotically asv

v0)
2 and 1/(v 2 v0), respectively. Although a truncation

he dispersion mode signal would not cause problems
econvolution in the frequency domain—as opposed to de
olution in the time domain, where inverse Fourier trans
ation of the truncated signal would give rise to severe

acts, and where the imaginary part must therefore be disc
4)—the tail of the dispersive flank of a nearby signal wo
orrupt Xi, because this has the same effect as a stro
istorted baseline.
In this paper, only reference signals characterized by a s

esonance frequency and a single coupling constant (typ
he quintet of a CHD2 group, as in deuterated acetonitr
ethanol, or acetone) were used. No new aspects arise
ore complicated cases are considered. Spectral paramePl

ere the residual offset of the baseline, as well asJ, v0, and

2 of the reference signal. Only the first two parameters w
ade adjustable, whereasv0 was extracted fromXi, and forT2

he value obtained from a well-shimmed spectrum was u
he reasons for this choice are that a baseline offset ca
ompensated much more easily by an additive algorithm
y a multiplicative one (Eq. [7]), and that an error in
oupling constant induces a frequency-dependent devia
hich would be at variance with the fundamental premis

eference deconvolution. In contrast to this, slight inaccura
n v0 or T2 do not have a crucial effect on the correc
pectrum. The former leads only to a small shift of the wh
pectrum, and the latter is equivalent to a multiplication of
ree induction decay by exp(t/T2,true 2 t/T2); as the valu
ssumed forT2 will usually be too long rather than too sho

ine narrowing accompanied by a decrease of the signa
oise ratio results, but unlessT2 is unreasonably short, this w
ot cause any stability problems.

xamples

The algorithm was tested with both synthetic and exp
ental data.
Figure 1 shows an example with synthetic data and f

igh digital resolution (0.046 Hz per data point). As signal
eference, an ABCD spin system (T2

sig 5 1.5 s) and a quinte
T ref 5 1.0 s) with the spectral parameters of CDCN were
2 3
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73REFERENCE DECONVOLUTION IN THE FREQUENCY DOMAIN
hosen. For simplicity, the maximum peak intensities of si
nd reference were taken to be comparable. The ideal spe

s displayed at the top of the figure.
An asymmetrical line broadening function was constru

s the sum of 10 Gaussians of different amplitudes, linewi
nd center positions within an interval of 0.5 Hz. Convolu
f the ideal spectrum with this line broadening function
uperposition of statistical noise (signal-to-noise ratio 400
ielded the spectrum shown as the center trace of the fi
he signals are broadened considerably (T 2

add ' 0.45 s); they
xhibit a pronounced asymmetry, and the small coupling
o longer resolved.
This spectrum served as the input to the deconvolu

rocedure. ForT2 of the reference signal, we took the value
he ideal spectrum, which is a rather strict condition. Sta
arameters for the iterations wereJ 5 2.55 Hz (asestimated

rom the broadened spectrum), a baseline offset of ze
idth of the correction function of 2.62 Hz (57 data poin
nd a width of the ideal reference signal of 16.88 Hz (368
oints). The iterations converged onJ 5 2.48953 Hz,which
iffers from the value of the ideal spectrum by 0.00053

FIG. 1. Test of the deconvolution algorithm with synthetic data. Le
pectrum; center trace, after convolution with an asymmetric line broa
xplanation, see text.
l
um

d
s,

d
)

re.

re

n
f
g

a
,
ta

z

i.e., two orders of magnitude below the digital resolution
aseline offset of 0.013% of the peak height instead of z
nd widths of the correction function and the ideal refere
ignal of 6.12 and 17.71 Hz, respectively. With these
arameters,x2 was 50 times lower than with the starting s
The bottom trace of the figure displays the spectrum

econvolution with the correction function obtained by sin
ar value decomposition, where only elementswj of magnitude
reater than 1028 of the maximum value were retained (t
mounted to three-quarters of thewj), and 1/wj was set to zer

or the others. The peaks are seen to be sharp and symme
nd the small couplings are well resolved again. Using
BCD signal, after deconvolution, as the input to LAOCO

14) gave spectral parameters that were essentially identi
hose initially used, whereas determination of several of t
arameters is impossible with the spectrum in the center t
It is evident that deconvolution must decrease the signa

oise ratio. In the example shown, this effect is particul
ronounced (the signal-to-noise ratio after deconvolutio
bout 80, i.e., worse by a factor of 50 than in the spec
efore deconvolution). This, however, is not due to the fact

ignal of an ABCD spin system; right, quintet reference signal. Top tra
ing function and addition of noise; bottom trace, after deconvolution.r further
ft, s
den
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74 GOEZ AND HEUN
he deconvolution is performed in the frequency domain
tead of the time domain; rather, the reason is the conside
egree of line broadening that is undone. When the spec
efore deconvolution (center of Fig. 1) is Fourier transform
nd an exponential multiplication is applied to recover

nitial linewidths, a comparable deterioration of the signal
oise ratio occurs.
Iterative adjustment of thePl, m, andn was found to be ver

mportant. Missettings ofJ by as little as 0.01 Hz already le
o noticeable distortions of the baseline. Distortions also
hen the width of the correction function or that of the id

eference signal are changed. As long as the ratio ofm and
2n 1 1) is kept constant, these effects are not very se
owever, when this ratio was decreased by 50%, the bas
rtifacts became so strong that the spectrum was no lo
iscernible.
It is clear that in a noise-free spectrumLU decomposition

nd singular value decomposition are equivalent as long a
atrix is not singular and round-off errors can be neglecte

his ideal case, there is also no point in zeroing certain elem
/wj because all of the associated data contain relevant
ation. However, in the presence of noise, singular v
ecomposition together with zeroing those elements 1/wj that

ndicate ambiguous combinations of input data generally

FIG. 2. Application of the deconvolution algorithm to an experime
pectrum (dynamic NMR spectrum ofp-methoxy-N,N-dimethylaniline and it
onjugated acid in acetonitrile-d3) measured on a Varian Gemini 200 sp
rometer. Shown is the signal of the meta protons of the substrate only
pectrum obtained with misadjusted shims; bottom, after deconvolution
urther explanation, see text.
-
ble
m
d
e
-

e
l

e.
ne
er

he
In
ts
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e

e

esults that were superior to those ofLU decomposition, in th
ense that the baseline artifacts were considerably small
A universal rule for the cutoff limit of thewj cannot be

iven. Plotting log(wj) sorted by size is a helpful thou
omewhat time-consuming procedure. The distribution o

j depends on the (usually unknown) shape of the line br
ning function and on the signal-to-noise ratio. It seems na

o assume that for a constant line broadening function
hould select a cutoff limit of thewj that is inversely propo
ional to the signal-to-noise ratio.

Finally, the applicability of the described algorithm is a
emonstrated with an experimental spectrum. A dyna
MR measurement was chosen for this purpose because

his method lineshape distortions are especially problem
nd lead to wrong estimates of the kinetic parameters
eference deconvolution one can easily correct for varying
omogeneity between the spectra of a series. In this wa
ypothetical static signals for the sample under study ca
btained very accurately and reliably from nonexchan
eference samples, and the shimming procedure can be
ned considerably.
Portions of the dynamic NMR spectra (digital resolut

.11 Hz per data point) observed in proton self-excha
etweenp-methoxy-N,N-dimethylaniline and its conjugate
cid (13) are shown in Fig. 2. The reference signal was a

he quintet of CD3CN. The spectrum was recorded with
hims deliberately misadjusted. The resulting artifacts (a s
er at half height, which even gives rise to a signal split
ith the smaller peaks) are clearly discernible.
The iterations were started withJ 5 2.55 Hz,width of the

orrection function 6.26 Hz (57 data points), width of the id
eference signal 40.43 Hz (368 data points), and baseline
ero.T2 of the ideal reference signal was taken to be 0.6
he final values of the parameters wereJ 5 2.47122 Hz
idths of the correction function and the ideal reference si
0.44 and 22.41 Hz (95 and 204 data points), respectively
n offset of 0.011% of the peak height. Again, singular v

p,
or

FIG. 3. Correction function employed for deconvolution in Fig. 2.
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75REFERENCE DECONVOLUTION IN THE FREQUENCY DOMAIN
ecomposition gave better results thanLU decomposition
our-fifths of thewj were retained, the cutoff limit being set
025 of the maximumwj. The correction function has be
lotted in Fig. 3.
The bottom trace of Fig. 2 displays the corrected signa

s seen that the shoulders and splittings are no longer pre
he lineshape is Lorentzian, and there are no baseline art
pplying the program DNMR5 (15) to the corrected spectru
nd to the uncorrected one gave exchange rates that diffe
factor of 1.35. This example further shows that in a rea

ase, i.e., in the absence of excessive line broadenin
nstrumental imperfections, the loss of sensitivity (signa
oise ratio before deconvolution 400:1, after deconvolu
50:1) and the baseline distortions are much smaller than
revious instance (Fig. 1), where synthetic data were use

CONCLUSIONS

The feasibility of reference deconvolution in the freque
omain has been demonstrated. With this approach, refe
ignals of arbitrary multiplicity can be used, which is
ossible when reference deconvolution is performed in

ime domain. This should broaden considerably the applic
ty of reference deconvolution. The computational demand
econvolution in the frequency domain are certainly hig

han with the FIDDLE algorithm, but in the age of power
ersonal computers this is no longer a true limitation.
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